● 水道統計(水質編)における調査対象項目の解説

(本表の解説は日本水道協会発行の「水道用語辞典」、令和5年度水道技術者研修会 水質管理(Bコース)テキストを参照しています。)

A 水質基準項目(51項目)

水道により供給される水は、水道法第4条の規定に基づき、「水質基準に関する省令」で規定する水質基準に 適合することが必要です。

なお、水質基準については、厚生労働大臣により諮問を受け厚生科学審議会において検討がなされました。 その検討経緯は、ここ(https://www.env.go.jp/water/water_supply/kijun/index.html) に公開されています。(外部リンク)

1 一般細菌	分類学的に特定のグループされる細菌の多くは病原菌。 糞便由来でない細菌も含む 調頼できる。単独な菌種であ め、糞便汚染指標としてよ
を意味するものではない。一般細菌として検出ではないが、汚染された水ほど多く検出される 2 大腸菌 検出されないこと 大腸菌はヒトや温血動物の腸管内に常在し、大腸菌群と比べて糞便汚染の指標としてより低るばかりでなく、自然界での生存期間が短いたり特異的である。塩素消毒が完全であれば検 3 カドミウム及びその化合物 0.003mg/L 以下 カドミウムは、自然界にごく微量であるが亜鉛多い。地表水、地下水中に亜鉛含量の1%以でわれる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク尿 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 化合物 0.0005mg/L 以下 単たいう。無機水銀は常温で唯一の液体金属	される細菌の多くは病原菌。 糞便由来でない細菌も含む 頼できる。単独な菌種であ め、糞便汚染指標としてよ
ではないが、汚染された水ほど多く検出される 2 大腸菌 検出されないこと 大腸菌はヒトや温血動物の腸管内に常在し、大腸菌群と比べて糞便汚染の指標としてより信るばかりでなく、自然界での生存期間が短いたり特異的である。塩素消毒が完全であれば検 3 カドミウム及びその化合物 の、003mg/L以下 カドミウムは、自然界にごく微量であるが亜鉛多い。地表水、地下水中に亜鉛含量の1%以われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク原化合物 水銀の量に関して、水銀は一般に無機水銀と有機水銀に分けられる物の、水銀の量に関して、水銀は一般に無機水銀と有機水銀に分けら、金属では、大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大	。 糞便由来でない細菌も含む 注頼できる。単独な菌種であ め、糞便汚染指標としてよ
2 大腸菌 検出されないこと 大腸菌はヒトや温血動物の腸管内に常在し、大腸菌群と比べて糞便汚染の指標としてより低るばかりでなく、自然界での生存期間が短いたり特異的である。塩素消毒が完全であれば検 カドミウム及び カドミウムの量に関して、 カドミウムは、自然界にごく微量であるが亜針多い。地表水、地下水中に亜鉛含量の1%以われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク原 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 10.0005mg/L 以下 水銀は一般に無機水銀と有機水銀に分けら 量をいう。無機水銀は常温で唯一の液体金属	糞便由来でない細菌も含む 素頼できる。単独な菌種であ め、糞便汚染指標としてよ
大腸菌群と比べて糞便汚染の指標としてより信るばかりでなく、自然界での生存期間が短いたり特異的である。塩素消毒が完全であれば検 3 カドミウム及び カドミウムの量に関して、カドミウムは、自然界にごく微量であるが亜鉛多い。地表水、地下水中に亜鉛含量の1%以でわれる。カドミウムの用途は充電式電池、ビニミウムなどと広い。富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク原 4 水銀及びその 水銀の量に関して、水銀は一般に無機水銀と有機水銀に分けらの.00005mg/L以下 量をいう。無機水銀は常温で唯一の液体金属	頼できる。単独な菌種であ め、糞便汚染指標としてよ
るばかりでなく、自然界での生存期間が短いたり特異的である。塩素消毒が完全であれば検 3 カドミウム及び カドミウムの量に関して、カドミウムは、自然界にごく微量であるが亜鉛多い。地表水、地下水中に亜鉛含量の1%以われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク尿 4 水銀及びその 水銀の量に関して、水銀は一般に無機水銀と有機水銀に分けらしたの物 の00005mg/L以下 よいう。無機水銀は常温で唯一の液体金属	め、糞便汚染指標としてよ
り特異的である。塩素消毒が完全であれば検 3 カドミウム及び カドミウムの量に関して、カドミウムは、自然界にごく微量であるが亜銀 その化合物 0.003mg/L 以下 多い。地表水、地下水中に亜鉛含量の1%以 われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク尿 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 1.00005mg/L 以下 水銀は一般に無機水銀と有機水銀に分けら 量をいう。無機水銀は常温で唯一の液体金属	
3 カドミウム及び カドミウムの量に関して、 カドミウムは、自然界にごく微量であるが亜金 その化合物 0.003mg/L 以下 多い。地表水、地下水中に亜鉛含量の1%以 われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク原 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	出されない。
その化合物 0.003mg/L 以下 多い。地表水、地下水中に亜鉛含量の1%以われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク原 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら し.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	
われる。カドミウムの用途は充電式電池、ビニミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和40年中毒では肺気腫、腎障害、骨変化、タンパク原 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	とともに存在していることが
ミウムなどと広い。 富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク原 4 水銀及びその 水銀の量に関して、 化合物 0.0005mg/L 以下 水銀は一般に無機水銀と有機水銀に分けら量をいう。無機水銀は常温で唯一の液体金属	Fの割合で存在しているとい
富山県の神通川流域に多発したイタイイタイムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク尿 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	ル安定剤のステアリン酸カド
ムが主な原因とされ、大正時代から昭和 40 年中毒では肺気腫、腎障害、骨変化、タンパク原 4 水銀及びその 水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	
中毒では肺気腫、腎障害、骨変化、タンパク尿 4 水銀及びその 水銀の量に関して、 化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	病は、鉱山排水中のカドミウ
4水銀及びその 化合物水銀の量に関して、 水銀は一般に無機水銀と有機水銀に分けら 量をいう。無機水銀は常温で唯一の液体金属	代にかけて発生した。慢性
化合物 0.0005mg/L 以下 量をいう。無機水銀は常温で唯一の液体金属	の症状がみられる。
	れ、総水銀とは両者の合計
	で、温度計、気圧計などの
計器類の他に、各種水銀化合物の原料として	また電極、触媒、水銀灯な
ど、幅広い用途がある。	
水銀による急性中毒は口内炎、下痢、腎障害	『、慢性中毒では貧血、白血
球減少を起こし、さらに手足の知覚喪失、精神	異常となる。昭和 30 年代に
熊本県水俣湾周辺で発生した水俣病は、工場	排水中のメチル水銀が原因
であり、これを摂取した魚介類を食したために	発症した。
5 セレン及びそ セレンの量に関して、 硫黄鉱床などから産出され、周期表では硫黄	と同族であるが金属性が
の化合物 0.01mg/L 以下 大きい。光伝導性のある半導体で多くの同素化	ながある。光電池、整流器、
複写機感光体などの電気材料、有機合成化学	
ど、各種部門に広く用途がある。	の触媒、色ガラス、顔料な
金属セレン自体の毒性は小さいが、化合物	の触媒、色ガラス、顔料な
膜に刺激を与え、胃腸障害、肺炎などの症状で	
死に至ることがある。	こは猛毒のものが多い。粘

6	鉛及びその化	鉛の量に関して、	方鉛鉱、白鉛鉱を原料鉱として得られ、軟らかく加工しやすい金属なの
		9.01mg/L 以下	で、昔から水道管として使用されてきたが、水道水中への鉛溶出が世界的
	L 100	0.01111g/ L \mathcal{M}	な課題となっている。水道事業者等が鉛管の布設替え、pH値の調整、広
			報活動の実施等を行っているが、家庭内配管を含め早期に取替えが必要
			である。 鉛は神経系の障害や疲労感、不眠、過敏、頭痛、関節痛や消化管障害、
			語は神経ボの障害や疲力感、小低、過敏、頭痛、関助痛や月化管障害、 高濃度の場合は脳炎、腎臓障害が起こる。
			高 辰 及 の 場合 は 脳 炎 、 育 脈
7	ヒ素及びその	ヒ素の量に関して、	自然界では銅、鉄、水銀、鉛、ニッケルなどの鉱物と共存し自然水中に
	化合物	0.01mg/L 以下	溶出するほか、鉱山排水や工場排水、ヒ酸石灰やヒ酸鉛などの農薬の混
			入によっても水中に含まれることがある。
			ヒ素の毒性は、化合物の種類によって異なる。急性中毒の症状は、腹
			痛、嘔吐、下痢、四肢及び筋肉痛、刺痛、筋肉の痙攣、紅斑性皮疹などが
			2 週間後に現われる。更に、四肢の感覚異常、角化症、手爪のミーズ線、
			運動と感覚の不調が1か月で現れる。
8	六価クロム化	六価クロムの量に関し	6価の形で存在しているクロムのことで、水に溶けてクロム酸および重ク
	合物	て、0.02mg/L 以下	ロム酸を生成する。メッキ廃水に多量に含まれる。
	L 100	C, 0.02mg/ L M I	6価クロム塩を多量に摂取した場合、嘔吐、下痢、尿毒症などを引き起こ
			し、死に至ることもある。
			し、知に主ることもある。
9	亜硝酸態窒素	0.04mg/L 以下	水中に含まれる亜硝酸イオン(NO ₂ -)中の窒素の量であり、窒素肥料、
			腐敗した動植物、家庭排水等に由来する。これらに含まれる窒素化合物
			は、環境中で化学的・微生物学的に酸化及び還元を受け、硝酸態窒素、
			亜硝酸態窒素等になる。
			摂取すると体内で食物中のタンパク質に含まれるアミン類と結合し、発が
			ん物質であるニトロソアミンを生成したり、特に乳幼児では血液中のヘモグ
			ロビンと反応してメトヘモグロビン血症を引き起こし重篤な状態になる危険
			性がある。空調用水配管などの内部の錆を防ぐ防食剤として亜硝酸を含
			む薬剤が利用されており、クロスコネクションによる事故例がある。
			塩素処理により容易に硝酸態窒素へと酸化されるので、通常の浄水処
			理により除去され、残留塩素のある浄水では検出されない。
10	シアン化物イ	シアンの量に関して、	シアン化合物には、シアン化ナトリウム、シアン化カリウムのように水中
	オン及び塩化	0.01mg/L 以下	でシアンイオン、シアン化水素を容易に生成する遊離型シアンと、フェリシ
	シアン		アン化カリウム、フェロシアン化カリウムのように金属錯化合物を形成する
			錯塩シアンがある。
			シアンは、めっき、鉄鋼製造、金銀の選鉱や多くの化学合成工業で使用
			される。シアンは自然中にはほとんど存在せず、シアン化合物を含んだエ
			場排水の混入によって検出される。また、含窒素化合物の燃焼によっても
			シアンが生じる場合がある。
			シアン化合物には強い毒性があり、人の体内にはいると、粘膜から吸収
			され、頭痛、吐き気などを引き起こし、死に至る場合もある。
	1	I	

11	硝酸態窒素 及び 亜硝酸態窒素	10mg/L 以下	【硝酸態窒素】 水中の硝酸イオン(NO3 ⁻)および硝酸塩に含まれている窒素のことである。硝酸イオンは有機および無機の窒素化合物の最終的酸化系である。 硝酸態窒素を多量に含む水を摂取した場合、体内で細菌により硝酸塩は亜硝酸塩へと代謝され、亜硝酸塩はメトヘモグロビン血症を起こす。 【亜硝酸態窒素】 (No.9 亜硝酸態窒素の解説参照) 硝酸態窒素は体内で亜硝酸態窒素へと速やかに変化するため、水道水
12	フッ素及びそ	フッ素の量に関して、	質基準は硝酸態窒素および亜硝酸態窒素の合計量となる。 水中のフッ素は、主として地質や工場排水の混入などに起因する。自然
	の化合物	0.8mg/L 以下	界に広く分布しているホタル石はフッ化カルシウムが主成分であるため、 日本でも特に温泉地帯の地下水や河川水に多く含まれることがある。 フッ素を適量に含んだ水を飲用した場合にはむし歯の予防に効果があ るといわれているが、多量に含まれていると斑状歯(慢性フッ素中毒)の原 因となる。
13	ホウ素及びそ の化合物	ホウ素の量に関して、 1.0mg/L 以下	ホウ素は、自然界に存在することはまれであるが、火山地域の地下水、温泉水にはメタホウ酸の形で含まれることがある。また、金属の表面加工処理剤、ガラス、エナメル工業などで使用されるので、これらの工業排水に混入することがある。そのほか海水淡水化、地質等の影響などを受ける地域で問題となる。 ホウ酸を少量摂取した場合には緩和な生理作用を示すに過ぎないが、多量のときには消化器、神経中枢等に影響を及ぼす。ホウ素による中毒症状は、一般に胃腸障害、皮膚紅疹、抑うつ症を伴う中枢神経刺激の症状である。
14	四塩化炭素	0.002mg/L 以下	テトラクロロメタンともいわれ、主な用途はフロンガスの製造原料、薫蒸殺菌剤、金属洗浄用溶剤などある。液化塩素に不純物として存在することがある。 人への影響は、吐き気、けだるさ、消化不良、昏睡状態等の神経病的症状を呈し、肝臓、腎臓、肺に最も鋭敏に現れる。吸入暴露では、中枢神経系の衰弱や腎臓、肝臓に影響する。
15	1,4-ジオキサ ン	0.05mg/L 以下	1,4-ジオキサンは、特異的な臭気のある無色の液体で、溶剤や有機溶剤の安定剤などの用途に使用されるほか、非イオン界面活性剤及びその硫酸エステルの製造工程において副生し、洗剤などの製品中に不純物として存在する。 毒性は目に強い刺激性を有し、肝臓、腎臓、中枢神経に影響を与え、また皮膚の脱脂を起こすことがある。ヒトに対しては、弱い遺伝毒性しか示されていないが、多臓器での腫瘍を誘発することが報告されており、国際がん研究機関(IARC)では、Group2B(ヒトに対して発がん性がある可能性がある)に分類している。

16	シス-1,2-ジク 0.04mg/L 以下	化学合成品は、シス体とトランス体という構造の異なる2種類の物質の
	ロロエチレン	混合物である。化学合成の中間体、溶剤、染料抽出剤、香料、熱可塑性樹
	及びトランス-	脂の製造に使用される。シス-1,2-ジクロロエチレンの環境中への放出は、
	1,2-ジクロロエ	製造過程及び溶剤として使用する過程で起きる。揮発性のため、多くが大
	チレン	気中に移行する。
		地表水を汚染したシス-1,2-ジクロロエチレンは速やかに大気中に揮散
		する。土壌に浸透すると吸着されにくく、地下水中に長期間滞留する。地中
		のトリクロロエチレン、テトラクロロエチレンが還元状態で微生物分解を受
		けると、シス-1,2-ジクロロエチレンが生成される。地下水中では、多くの場
		合トリクロロエチレンと共存している。
		毒性は高濃度の吸入暴露により中枢神経系の機能低下を引き起こし、
		低濃度の暴露では吐き気、眠気、疲労感、目まいが生じる。なお、トランス
		体はシス体に比べて約2倍の中枢神経抑制作用をもつ。
17	ジクロロメタン 0.02mg/L 以下	 合成有機化学物質であり、自然界には存在しない。殺虫剤、塗料、二
' '	0.02mg/ L 2/1	ス、塗料剥離剤、食品加工中の脱脂処理および洗浄液などとして使われ
		る。表流水中に排出されたジクロロメタンは大気中に揮散し数日から数週
		間で光化学分解するが、地上に排出されたジクロロメタンは容易に地下水
		に移行し、長期間残留する。
		ジクロロメタンの毒性は研究で 1.3mg/kg 体重の単回経口投与により、
		呼吸困難、運動失調、チアノーゼ及び昏睡が認められた。高濃度の吸入
		暴露は中枢神経系へ影響を及ぼす。国際がん研究機関(IARC)では、
		Group2A(ヒトに対しておそらく発がん性がある)に分類している。
18	テトラクロロエ 0.01mg/L 以下	
	チレン	ライクリーニング溶剤、金属用脱脂剤などで、使用後に排出されて土壌中
		を移行して地下水中に入り、地下水汚染物質の一つとなっている。地下水
		中では数カ月から数年間にわたって残留する。
		トリクロロエチレンに比べて尿中代謝物排泄ははるかに少ない。その毒
		性は肝腎障害や中枢神経抑制作用があり、また、肝がんの発生も認めら
		れている。高濃度のテトラクロロエチレンは中枢神経系の抑制、低濃度で
		は肝臓と腎臓に障害をもたらす。国際がん研究機関(IARC)では、
		Group2A(ヒトに対しておそらく発がん性がある)に分類している。
19	トリクロロエチ 0.01mg/L 以下	三塩化エチレン、TCE、トリクレン、トリクロロエテンともいう。主な用途は
	レン	金属の脱脂剤である。環境に放出されて地下水汚染を起こす。地下水中
		に長期間残留し、分解してジクロロエチレンや塩化ビニルになる。また、テ
		トラクロロエチレンの分解によって生成することもある。
		体内吸収では抱水クロラールを経てトリクロロ酢酸に代謝される。発が
		体内吸収では超小グログールを経て下りグロロ酢酸に代謝される。光がん性も認められ、高濃度を吸入暴露すると、眠気、頭痛、吐き気や中枢神
		経の機能低下を引き起こす。

20	ベンゼン	0.01===/1_NF	揮発性のある無色の液体で、芳香族特有の芳香があり、引火性が大き
20	N JEJ	0.01mg/L 以下	は、工業化学的に基本的かつ重要な物質で、置換、付加および開裂の三つの反応により、多種の芳香族化合物を生成させることができるほか、溶剤、燃料、アルコール変性剤などとしても重要である。 研究では発がん性や骨髄形成不全、リンパ球減少症も認められる。高い濃度のベンゼンを吸入すると、めまい、不快感、嘔吐、頭痛、昏睡、死に至るような中枢神経系の抑制を起こす。
21	塩素酸	0.6mg/L 以下	次亜塩素酸ナトリウムを貯蔵すると、次亜塩素酸の分解により塩素酸濃度が上昇することから、貯蔵条件(20°C以下で貯蔵、長時間貯蔵しない等)に留意を要する。また、二酸化塩素を浄水処理に使用する場合は、分解生成物として亜塩素酸や塩素酸が生成するため、亜塩素酸の検査も併せて必須のものとして扱うこととされている。
22	クロロ酢酸	0.02mg/L 以下	クロロ酢酸はハロゲン化酢酸類の1つで、浄水処理において水中の有機物質と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。 化学工業上の主な用途は除草剤、チューインガム可塑剤、塩化ビニル可 塑剤、医薬品、アミン酸等の合成、香料、界面活性剤等に使用される。刺 激臭のある無色の結晶である。 毒性は皮膚や鼻、目の粘膜の腐食で、変異原性が認められる。
23	クロロホルム	0.06mg/L 以下	クロロホルムはトリハロメタン類の1成分で、浄水処理において水中の有機物質と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。通常は水温が高いほど多く生成し滞留時間とともに増加する。 化学工業上の主な用途は医薬品、溶剤、有機合成の原料として用いられる。無色透明の液体で、甘い刺激臭がある。 クロロホルムには強い麻酔作用があり、肝臓、腎細尿管、心臓などに細胞毒として作用する。また、動物実験によって腎腫瘍や肝がんなどの発がん性が確認されている。低濃度の慢性毒性では胃腸、肝腎障害が起こり、高濃度では反射機能の喪失、感覚麻痺、呼吸停止などが起こる。
24	ジクロロ酢酸	0.03mg/L 以下	ジクロロ酢酸はハロゲン化酢酸類の1成分で、浄水処理において水中の有機物質と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。 刺激臭のある無色の液体で、慢性試験では発がん性を示す根拠は認められていないが、国際がん研究機関(IARC)では、Group2B(ヒトに対して発がん性がある可能性がある)に分類している。
25	ジブロモクロロ メタン	0.1mg/L 以下	ジブロモクロロメタンはトリハロメタン類の1成分で、浄水処理において水中の有機物質や臭素と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。通常は水温が高いほど多く生成し滞留時間とともに増加するが、生成量は原水中の臭素イオン量に大きく影響される。 写真工業の排水や海水の影響を受けやすいところ、また塩分を含む地下水で臭素化トリハロメタンが多い。米・国家毒性プログラム(NTP1985)では、マウスによる2年間の経口投与実験で肝の脂肪変性、腎ネフローゼが認められた。

26	臭素酸	0.01mg/L 以下	臭素酸は浄水処理においてオゾン処理を行っている場合、臭素が存在し
			ていると消毒副生成物として生成する。また、消毒剤としての次亜塩素酸ナトリウム製造時に、不純物の臭素が酸化されて臭素酸が生成して残留し、これを浄水処理で注入した時に浄水に付加される。 工業的には臭素酸の最も一般的な形態が臭素酸カリウムと臭素酸ナトリウムで、臭素酸カリウムは小麦粉改良材として、臭素酸ナトリウムは分析用試薬、毛髪のコールドウェーブ用薬品等に使用される。 毒性影響は腹痛、中枢神経系の機能低下、呼吸困難、肺浮腫、腎機能低下、聴覚障害等および発がん性が報告されている。
27	総トリハロメタ ン	0.1mg/L 以下	トリハロメタンは、水中のフミン質等の有機物質(前駆物質)と消毒剤の塩素が反応して生成する消毒副生成物のうち、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタン及びブロモホルムの4物質の総称で、これら4物質の濃度の総和を「総トリハロメタン」という。なかでもクロロホルムは発がん性物質であることが明らかとなっている。トリハロメタンの生成は、塩素注入率、水温、pH値、遊離塩素との接触時間(滞留時間)、臭化物イオンなどの因子に依存して生成量は異なるが、これらの因子の値が大きいほど生成量は多い。塩素添加後数分以内でトリハロメタンの生成が始まり、遊離残留塩素と接触した経過時間(滞留時間)が長いほどは成量は増加まる原水の有機性活躍が進行するほど
28	トリクロロ酢酸	0.03mg/L 以下	時間)が長いほど生成量は増加する。原水の有機性汚濁が進行するほど 生成量が多くなり、また季節的には冬季より水温の高い夏季が多い。 トリクロロ酢酸はハロゲン化酢酸類の1成分で、浄水処理において水中
			の有機物質と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。 工業的には医薬品の原料や除草剤などに使用される。刺激臭のある無色で吸湿性の結晶である。 マウスでの実験で肝腫瘍を引き起こすことは認められたが、変異原性や染色異常などの試験では陰性及び陽性の結果が混在して報告されており、国際がん研究機関(IARC)では、Group2B(ヒトに対して発がん性がある可能性がある)に分類している。
29	ブロモジクロロ メタン	0.03mg/L 以下	ブロモジクロロメタンはトリハロメタン類の1成分で、浄水処理において水中の有機物質や臭素と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。通常は水温が高いほど多く生成し滞留時間とともに増加するが、生成量は原水中の臭素イオン量に大きく影響される。写真工業の排水や海水の影響を受けやすいところ、また塩分を含む地下水で臭素化トリハロメタンが多い。 米・国家毒性プログラム(NTP1987)では、マウスによる2年間の経口投与実験では、腎細胞肥大、肝の脂肪変性のほか腎臓の腺腫と腺がん、肝細胞の腺腫と腺がんがみられた。
30	ブロモホルム	0.09mg/L 以下	ブロモホルムはトリハロメタン類の1成分で、浄水処理において水中の有機物質や臭素と消毒剤(塩素)が反応して生成する消毒副生成物の一つである。通常は水温が高いほど多く生成し滞留時間とともに増加するが、生成量は原水中の臭素イオン量に大きく影響される。写真工業の排水や海水の影響を受けやすいところ、また塩分を含む地下水で臭素化トリハロメタンが多い。

31	ホルムアルデ ヒド	0.08mg/L 以下	ホルムアルデヒドは、浄水処理の過程で、塩素処理やオゾン処理で生成されるが、高度浄水処理過程では粒状活性炭処理で大部分を除去できるとされている。 工業的にはエポキシ樹脂塗料及びアクリル樹脂塗料、合成樹脂原料、医薬品、農薬や細菌の増殖を抑える薬剤、その他分析用試薬等に使用されている。 人への健康影響としては、透析用の水を調製するために用いたフィルターにホルムアルデヒドが存在し、透析患者が溶血性の貧血症を起こしていた事例が報告されている。ヒトがホルムアルデヒドを吸入暴露したとき、がんを生じるという結果が報告されている。
32	亜鉛及びその 化合物	亜鉛の量に関して、 1.0mg/L 以下	自然水中に微量に含まれるが、高濃度の亜鉛は鉱山排水や工場排水などによる汚染が原因であることが多い。水道水で高濃度の亜鉛が検出される場合は、そのほとんどが給水管などの亜鉛引き鋼管からの溶出による。 水道水に高濃度の亜鉛が含まれていると白濁して、いわゆる白水の原因となる。また 5mg/L 以上含まれると収れん味を呈する。毒性は比較的弱いが、高濃度の場合には腹痛、嘔吐、下痢などの中毒症状をもたらすことがある。
33		アルミニウムの量に関して、0.2mg/L 以下	地球の表面に存在する元素で3番目に多く、金属では最も多い。さびにくく、軽く丈夫なので航空機、自動車、建築物などに使われている。自然水中にも含まれるが、溶解度が小さいので、その量は少ない。しかし、鉱山排水、工場排水、温泉などの混入により多くなることがある。アルミニウムの化合物である「ミョウバン」は昔から水の清澄剤として、また、硫酸アルミニウム、ポリ塩化アルミニウムも水道水の水処理剤として用いられている。濃度が高いと、白濁水の原因となる。
34		鉄の量に関して、 0.3mg/L 以下	鉄は、酸素、ケイ素、アルミニウムについで地球の表面に存在する元素で4番目に多い。地表水中ではFe(OH)3として懸濁して存在している。また、泥炭地などの有機物の多いところではコロイド性の有機錯体として存在する。自然水中に含まれる鉄は、地質に起因するもののほか鉱山排水、工場排水などからの場合もある。配水管、給水管から溶出することもあり、0.3mg/L以上溶解すると、水に色がつきはじめ赤水の原因となり、0.5mg/Lでは臭気や苦味を与える。鉄は栄養上、1人1日当たり約10mg以上必要とされている。 鉄塩の毒性は低いが、非常に大量に摂取した場合の急性毒性は、うつ病、昏睡、呼吸障害や心拍停止などである。
35	銅及びその化 合物	銅の量に関して、 1.0mg/L 以下	天然には主として硫化物(黄銅鉱、班銅鉱、輝銅鉱)の形で産出する。電線、合金、貨幣、彫刻、メッキ、農薬など、多くの分野に用いられる。 銅イオンを 1.0mg/L 以上含む水は金属味を帯び、着色(青色)を与える。 ヒトにとって銅は必須元素であり、成人の必要量は 1 日に約 2mg とされ ている。銅化合物は藻類、カビ類、無脊椎動物に対しては強い毒物である が、哺乳類に対しては蓄積性が認められないので慢性中毒のおそれは少 ない。

36	その化合物	ナトリウムの量に関して、200mg/L 以下 マンガンの量に関して、	地殻中に広く分布。海水中には約 10g/L 含まれ、また岩塩として巨大な鉱床をつくる。ナトリウムは自然水中に広く存在する元素であるが、海水、工場排水の混入、水処理時の苛性ソーダによる pH 調整などに由来することもある。 ナトリウムイオンは動物体内の生理に重要な役割を果たしている。ナトリウムと高血圧との関係はよく論じられるが、1日 1.6~9.6g の摂取量では人の健康に何ら影響はないとみられている。
37		0.05mg/L 以下	る。生理的に不可欠の元素で、炭水化物の代謝などに関与する。 給・配水管内壁、水槽などにマンガン酸化物が付着すると、それが触媒 となり、酸化が促進されて沈積量が多くなり、流速の変化で流出して黒い 水の原因となる。自然水中では鉄と共存し、水道原水では 0.01~0.05 mg /L 程度含有される例が多い。水源別では地下水に多い。 過剰摂取すると全身倦怠感、頭痛、不眠、言語不明瞭などの中毒症状を 起こす。
38	塩化物イオン	200mg/L 以下	自然水は常に多少の塩化物イオンを含んでいるが、これは地質に由来するもので、特に海岸地帯では海水や送風塩の影響によることが大きい。しかし、塩化物イオンは下水系、生活系および産業系などの各排水や、屎尿処理水などの混入によっても増加する。したがって、塩化物イオンは水質汚濁の指標の一つともなっている。 多量の塩化物イオンは水に味をつけたり、鉄管などの腐食を促進したりする傾向がある。塩化物イオン自体の毒性は知られていないが、2.5mg/L以上の濃度の塩化ナトリウムを含む飲料水を過剰に飲用していると高血圧症を引き起こすと報告されている。
39	カルシウム、 マグネシウム 等(硬度)	300mg/L 以下	【カルシウム】 自然界には遊離状態で産出されず、炭酸塩およびケイ酸塩として広く多量に存在する。水中ではカルシウムイオン(Ca ²⁺)と して存在し、硬度の主体をなしている。その起源は地質によるものが主であるが、他にコンクリート構造物からの溶出、海水、工場排水および温泉などの混入に由来するものがある。
			【マグネシウム】 自然界では単体としては存在せず、炭酸塩、ケイ酸塩、硫酸塩および塩 化物などとして広く多量に存在する。水中にはマグネシウムイオンとして存 在し、カルシウムイオンとともに硬度の主体をなしている。その成因は主に 地質に由来するが、鉱山排水、工場排水、海水および温泉などの混入に よることもある。
			硬度は、水中のカルシウムイオン及びマグネシウムイオンの量を、これに対応する炭酸カルシウムの量に換算したもので、水の味に関連する。硬度成分の多少により、軟水、硬水の区別があり、わが国の水道水の 75% は硬度 50mg/L 以下である。硬度が高いと石けんの洗浄効果を阻害し、さらに硬度が高すぎると、胃腸を害して下痢を起こす場合がある。

40	蒸発残留物	500mg/L 以下	水を蒸発乾固したときに残る物質で、具体的には一定量の検水を蒸発皿に入れて水浴上で蒸発乾固し、残った物質量を求める。濁質のある検水をそのまま蒸発乾固すれば、浮遊物質と溶解性物質との総和となる。 水道水の主な蒸発残留物の成分は、カルシウム、マグネシウム、ケイ酸、ナトリウム、カリウム等の塩類及び有機物である。健康への影響はほとんど生じない。
41	陰イオン界面 活性剤	0.2mg/L 以下	界面活性剤のうち、水溶液中で活性剤の主体が陰イオンになるもので、 工場排水、家庭下水などの混入に由来し、水中に存在すると泡立ちの原 因となることから、汚濁の重要な指標である。また、陰イオン界面活性剤に 付随するリン酸塩による水源の富栄養化が問題となっている。なお、毒性 はほとんど認められない。
42	ジェオスミン	0.00001mg/L 以下	ジェオスミンは、湖沼等で富栄養化現象に伴って発生するかび臭(異臭味)の原因物質である。放線菌や藍藻類のアナベナの一部の種により産生される。その毒性はほとんど認められない。
43	2ーメチルイソ ボルネオール	0.00001mg/L 以下	2ーメチルイソボルネオールは、湖沼等で富栄養化現象に伴って発生するかび臭(異臭味)の原因物質である。藍藻類のフォルミディウムやオッシラトリアにより産生される。その毒性はほとんど認められない。
44	非イオン界面 活性剤	0.02mg/L 以下	非イオン界面活性剤とは、界面活性剤のうち、イオンに解離する基を持たない物質の総称である。エーテル型、エーテルエステル型、エステル型、含窒素型が知られている。洗浄剤、乳化剤、分散剤、消泡剤、潤滑油、化粧品、流出油の処理剤等に使用される。その毒性は、一般に陰イオン界面活性剤に比べ低く、健康への影響はほとんど生じない。
45	フェノール類	フェノールの量に換算して、0.005mg/L 以下	芳香族化合物のベンゼン環の水素が、水酸基で置換された化合物の総称で、環境汚染の原因となる。フェノール類は、天然水中には存在しないが、合成樹脂、界面活性剤などの原料として大量に使用されており、化学工場排水、ガス製造工場排水などに含まれていることがある。フェノール類が含まれていると水の塩素処理過程でクロロフェノール類が生成し、水に著しい異臭味を与えるので、厳しい排水基準が示されている。
46	有機物(全有機炭素(TOC)の量)	3mg/L以下	水中の全有機炭素(TOC: Total Organic Carbon)は、種々の有機化合物から構成されていて、これらの有機化合物に含まれている炭素量をいう。全有機炭素は、水中に含まれる有機物総量の指標として用いることができるため、原水の有機性汚濁の状況や浄水処理過程における水の処理性評価に利用することができる。
47	pH値	5.8 以上 8.6 以下	pH 値は水素イオン濃度の逆数の常用対数値。pH7 は中性、pH7 より値が小さくなるほど酸性が強くなり、値が大きくなるほどアルカリ性(塩基性)が強くなる。水道法に基づく水質基準は 5.8 以上 8.6 以下であること、また、水質管理目標設定項目としての目標値は 7.5 程度とされている。水の基本的な指標の一つであり、理化学的水質、生物学的水質、浄水処理効果、管路の腐食などに関係する重要な因子である。
48	味	異常でないこと	水の味は、水に溶存する物質の種類・濃度によって感じ方が異なる。味の原因には、下水、工場排水等による汚染、生物や細菌類の繁殖、また、海岸地帯では海水の影響をうけ塩味を感じることもある。 異常な味は不快感を与えるので飲用には適さない。味と臭気は多くの場合不可分で、臭気を含めば不快な味と感じる。

49	臭気	異常でないこと	水の臭気は水に溶解している種々の物質が原因となっている。水道にお
			いて問題となる臭気物質は、藻類や放線菌等の生物に起因するかび臭物
			質、フェノールなどの有機化合物が主なものである。異常な臭気は不快感
			を与えるので飲用には適さない。嗅覚は危険予知本能の一つで、「味」に
			比べて極めて鋭敏である。
50	色度	5 度以下	水中に含まれる溶解性物質およびコロイド性物質が呈する黄褐色の程
			度をいう。原水においては、主に地質に由来するフミン質、フミン酸鉄によ
			る呈色と同じ色調の色について測定される。水道水においては配管等から
			の鉄の溶出などによって色度が高くなることがある。精製水 1L 中に白金イ
			オン 1mg およびコバルトイオン 0.5mg を含むときの呈色に相当するものを
			色度 1 度としている。
51	濁度	2 度以下	濁度は、水の濁りの程度を、ポリスチレン系粒子(5種類)を濁質の標準
			液とし、これと比較して測定する。起因物質は、粘土性物質(ケイ酸塩が主
			体)、溶存物質(鉄、マンガンなど)の化学変化をしたもの、藻類、微生物、
			有機性物質など。水道において、原水濁度は浄水処理に大きな影響を与
			え、浄水管理上の指標となる。また、給水栓中の濁りは、外観を損ない、不
			快感、管内沈泥を起こす。濁質の中に細菌が取り込まれ、塩素消毒の効
			果が及ばず、浄水中で細菌が増殖することがある。
			Store Water V. C. V. V. V. L. C.

B 水質管理目標設定項目(27項目)

水質基準とするにいたりませんが、水道水中での検出の可能性があるなど、水質管理上留意すべき項目、必要に応じ水質検査を実施する項目です。このうち農薬類については、全国の検出状況や使用量などを 考慮して、114項目がリストアップされ、「総農薬方式」とよばれる考え方で設定されています。

	項目	目標値	、「秘長栄力式」とよばれる考え力で放走されています。 解説
1		アンチモンの量に関し	アンチモンは、半導体材料、潤滑剤、弾薬、陶器、硝子などの材料成分と
	びその化合物	て、0.02mg/L 以下	して主に使われている。三価アンチモンは容易に赤血球に取り込まれる
			が、五価アンチモンは取り込まれない。飲料水中のアンチモンの形態が毒
			性のキー決定要因であるが、飲料水中のアンチモンはほとんどが、弱毒性
			型の五価アンチモン、オキソ-陰イオン型と思われる。
			急性中毒を起こすと、嘔吐と下痢の症状を呈する。
2	ウラン及びそ	ウランの量に関して、	ウラン化合物はガラス・磁器の着色剤、光電管にも使用されているが、
	の化合物	0.002mg/L 以下(暫定)	主に原子炉の燃料として使用されている。ごく微量であるが、地球の表面
			の近くの岩石(特に花崗岩)及び海水中に薄く分布している。
			ウランの健康影響としては化学毒性による眼粘膜刺激、催涙及び結膜
			炎、吸入による気道刺激、腎障害などがある。また、放射線障害による肺
			がん、骨肉腫及びリンパ腫の増加などがある。
3	ニッケル及び	ニッケルの量に関して、	 ニッケルは、ステンレス鋼、めっき、貨幣、顔料、触媒原料などに使用さ
			れている。ニッケルの化合物は不溶性のものが多いので、自然水中に存
		g/ = 1 2 / /	在することはまれであるが、鉱山排水、工場排水あるいはニッケルめっき
			の溶出などから混入することがある。また、水道では管材及びその他の材
			料の腐食による汚染がある。
			大量に摂取するとめまい、嘔吐、急性胃腸炎を引き起こす。国際がん研
			究機関(IARC)では、金属ニッケルは Group2B(ヒトに対して発がん性があ
			る可能性がある。)に、ニッケル化合物では Group1(ヒトに対して発がん性
			がある。)に分類されている。
			75 05 0 6 7 1 C 75 XR C 10 C 5 ~ 0 6
4	「削除」	「削除」	「削除」
5	1, 2-ジクロ	0.004mg/L 以下	主に塩化ビニルモノマーの原料として使用されるほか、有機溶剤、殺虫
	ロエタン		剤、金属の脱脂洗浄等に使用されている。環境中には、貯蔵タンクからの
			漏出や工場排水等により放出されるおそれがある。地表水を汚染した場
			合は比較的容易に大気中に揮散するが、土壌吸着性は低く、土壌を浸透
			し地下水に進入すると安定な形で閉じこめられるため長期間にわたり汚染
			が継続する。
			健康影響はめまい、吐き気、嘔吐などがある。
6	「削除」	 「削除」	「削除」
		' 月117末]	, 日)
7	「削除」	 「削除」	「削除」
		-	
	<u> </u>		

8	トルエン	0.4mg/以下	染料、香料、有機顔料、ポリウレタン、合成繊維などの原料として、また、
°	トルエン	_	
			樹脂や塗料の溶剤として使用されている。石油成分の一つであり、石油分
			留生成で得られる。
			健康影響としては、急性暴露により、頭痛、吐き気、錯乱などの症状を引
			き起こす。
9	フタル酸ジ(2	0.08mg/L 以下	可塑剤として、ポリ塩化ビニルフィルム、シート、レザー、ホース、機械器
_	-エチルヘキ		具部品、日用雑貨などに使われ、また農薬、化粧品、染料、印刷インクな
3	シル)		どの溶剤や保留剤としても使用されている。
10	亜塩素酸	0.6mg/L 以下	二酸化塩素を浄水処理に使用する場合は、分解生成物として亜塩素酸
			や塩素酸が生成するため、亜塩素酸の検査は必須のものとして扱うことが
			望ましい。
			亜塩素酸塩により、赤血球中のヘモグロビンが酸化されメトヘモグロビン
			を形成することによる中毒症が知られている。
11	「削除」	「削除」	「削除」
12	 二酸化塩素	0.6mg/L 以下	 主に漂白剤として使用されている。我が国においては、浄水処理に二酸
12	─¤xiuª#	3	化塩素を使用している実績はない。なお、二酸化塩素を浄水処理に使用
			する場合の使用濃度については、通常1~2mg/L とされている。
			二酸化塩素を浄水処理に使用する場合は、分解生成物として亜塩素酸
			や塩素酸が生成するため、塩素酸に加えて亜塩素酸の検査も必須のもの
			として扱うこととされている。
13	ジクロロアセト	0.01mg/L 以下(暫定)	塩素処理の際に遊離炭酸とフミン物質、藻類、アミノ酸が反応してできる
]	ニトリル		副生成物である。土壌や汚泥等にはあまり吸着せず、生物への濃縮もあ
			まり大きくないと考えられている。
14	均水クロラー	0.02mg/L 以下(暫定)	 浄水過程で、水中の有機物質と消毒剤の塩素が反応して生成される。鎮
	ル		静剤、睡眠薬等の医療用、医薬品や農薬の原料として使用されている。
			所用、呼吸未可の必須用、必未明で展来の原料として使用で10で0°0。
15	農薬類	検出値と目標値の比の	水源上流などにおける農薬の使用状況により、使用されている薬剤に
		和として、1 以下	ついて検査を行うこととされている。計 115種類(令和4年度時点)の農薬
			が対象になっていて、総農薬方式として評価される。
	T는 로피 I 는 -+-		
16	残留塩素	1mg/L 以下	水中に塩素を注入することによって消毒された後に残留した有効塩素を
			いい、次亜塩素酸などの遊離有効塩素(遊離残留塩素)とクロラミンのよう
			な結合有効塩素(結合残留塩素)に区分される。残留塩素の測定は平成
			15年9月29日厚生労働省告示第318号〔一部改正 令和2年3月25
			日厚生労働省告示第 96 号〕による。衛生上の措置として給水の残留塩素
			を遊離残留塩素として 0.1 mg/L(結合残留塩素の場合は 0.4 mg/L)以上保
			持するよう規定している(水道法施行規則 17 条)。
17	カルシウム、	10mg/L 以上	水質基準項目 39 を参照
		100mg/L 以下	小只坐干視口 ∪∪ C罗麻
		TOOMg/L以下	
	等(硬度)		
18		_, _, _, _ = == -	
		マンガンの量に関して、 0.01mg/L 以下	水質基準項目 37 を参照

19	遊離炭酸	20mg/L 以下	水中に溶解している二酸化炭素(CO2)のこと。遊離炭酸は炭酸塩や有
13	延降及政	Zonig/ L W I	機物質が分解して発生した二酸化炭素や、空気中の二酸化炭素などが水
			中に溶解することに起因する。地下水では有機物の分解などにより、一般
			に多く存在する。遊離炭酸には水中のアルカリ化合物と反応して炭酸化合
			物を生成させるような腐食性のある侵食性遊離炭酸と、腐食性のない従
			物で生成させるような腐良性のめる慢良性避離灰酸と、腐良性のない促属性遊離炭酸がある。
		0.0 // N.T.	
20	1, 1, 1-トリ	0.3mg/L 以下	ドライクリーニング用溶剤、金属の脱脂洗浄剤、繊維のしみ抜き剤などに
	クロロエタン		使用されている。健康影響としては、吐き気、下痢、めまい、ふらつきなど
			の症状がある。
21		0.02mg/L 以下	ガソリンのオクタン価向上剤、アンチノック剤、ラッカー混合溶剤の混和性
	チルエーテル		改良材などに使用されている。健康影響については、毒性評価が詳細にさ
			れていないのが現状であるが、地下水で一過的に高濃度で検出されると
			の情報もある。
22	有機物等(過	3mg/L 以下	過マンガン酸カリウム消費量は、水中の有機物の量を知る目的で古くか
	マンガン酸カ		ら用いられている項目である。水中の有機物や還元性物質(被酸化性物
	リウム消費		質)の量を、酸化させるのに必要な過マンガン酸カリウムの量として表した
	量)		もので、一般に有機物の含有量の指標になっている。
			土壌に由来するフミン質を多く含む場合や水道水源にし尿、下水又はエ
			場排水が混入した場合に増加する。有機物の多い水は渋みがあり、また
			消毒に用いる塩素の消費量も多くなることから、水の味を損なう原因にな
			る。
23	臭気強度	3 以下	検水の臭気をほとんど感知できなくなるまで無臭味水で希釈し、その希
	(TON)		 釈倍率によって示される臭気の強さのこと。TON ともいう。臭気に対する感
			 受性は個人差があり、また、同一人でも測定時の状態で差異を生じるた
			め、複数人数による試験が望ましい。
24	蒸発残留物	30mg /L 以上	水質基準項目 40 を参照
		200mg/L 以下	
25	<u></u> 濁度	1 度以下	水質基準項目 51 を参照
26	pH 値	7.5 程度	水質基準項目 47 を参照
27	腐食性(ラン	-1 程度以上とし、極力	水の pH 値、カルシウムイオン量、総アルカリ度及び溶解性物質から求
	ゲリア指数)	0に近づける	められるもので、水の pH 値とその水の理論的 pH 値との差を表す。指数
			が正の値で絶対値の大きいほど炭酸カルシウムの析出が起こりやすくな
			る。また、負の値では炭酸カルシウム被膜が形成されず、その絶対値が大
			きくなるほど水の腐食傾向は強くなる。
28	従属栄養細	1ml の検水で形成される	従属栄養細菌とは、生育に有機物を必要とする細菌のことであり、独立
	菌	集落数が、2,000 以下	栄養細菌(光合成細菌や化学合成独立栄養細菌等)を除いた細菌のこと
			である。一般細菌が増殖しにくい低水温の水環境においても増殖できるた
			め、原水においては有機汚染指標として、また配・給水系では衛生状態を
			捉える指標として用いられる。
1			健康影響については、従属栄養細菌は低温での育成可能菌が多いた
			め、医学領域の細菌のように同定手順は確立されていない。日和見病原
			性を指摘されている細菌もいるが、多くは無害であると考えられている。
29	1,1-ジクロロ	0.1mg/L 以下	塩化ビニリデンともいう。主な用途としてポリ塩化ビニリデンの製造に使
-	エチレン		用される。工場排水を通じて土壌及び水中に放出され、土壌中を浸透して
1	_,,,,,		地下水中に移動する。また、この物質はトリクロロエチレン及びテトラクロロ
			エチレンの分解生成物である。
Ĩ			
			素程度である。

30	アルミニウム	アルミニウムの量に関し	水質基準項目 33 を参照。
	及びその化合	て、0.1mg/L 以下	
	物		
31	ペルフルオロ	ペルフルオロオクタンス	PFOS(ペルフルオロオクタンスルホン酸)及び PFOA(ペルフルオロオク
	オクタンスル	ルホン酸(PFOS)及びペ	タン酸)は、水や油をはじく、熱に強い、薬品に強い、光を吸収しない等の
	ホン酸	ルフルオロオクタン酸	性質を持ち、撥水剤、表面処理剤、乳化剤、消火剤、コーティング剤等に
	(PFOS)及び	(PFOA)の量の和として	用いられてきた。
	ペルフルオロ	0.00005mg/L 以下(暫	PFOSと PFOA の健康影響は明確にはなってはいないが、研究では乳
	オクタン酸	定)	児における発達影響等の原因となる可能性が示唆されており、ストックホ
	(PFOA)		ルム条約第9回締約国会議において「製造・使用等の禁止」が決定された
			(2020 年 12 月発効、ただし泡消火薬剤など 5 年間猶予の一部除外あ
			り)。一方、WHO 飲料水水質ガイドライン値は定められていないが、現在、
			検討が進められている。
			米国の研究による有害性評価から、日本では PFOS、PFOA ともに
			0.00005mg/L 以下という値が導き出されたが、両物質の有害性評価は同
			等であり、検出状況を見るかぎり両物質が同地点で同時に検出されている
			ことから、PFOS と PFOA の総濃度(合計値)として 0.00005mg/L 以下とさ
			れた。

C その他の項目

水質基準・水質管理目標設定項目ではありませんが、水道に関連する項目です。

	項目	解説
1	水温	水温は、地表水の場合、気温の影響を受けやすく、湖沼や貯水池の場合、水温の変化によって、 比重が変わり、水の停滞や循環などの原因となる。また、水温の変化は物質の溶解性、生物の消 長、河川での自浄作用などに影響を与える。
2	アンモニア態窒素	水中のアンモニウムイオン(NH4 ⁺)に含まれる窒素のこと。有機窒素化合物の分解、工場排水、下水、し尿等の混入によって生ずる場合が多い。土壌や水中の細菌により亜硝酸態窒素、硝酸態窒素へと酸化され、嫌気性状態では逆に硝酸態窒素、亜硝酸態窒素が還元されてアンモニア態窒素となる。 浄水処理では塩素処理や、緩速ろ過のような生物化学処理によって分解され減少するので、処理工程の管理指標としても重要な項目である。
3	生物化学的酸素要求量(BOD)	BODとは水中の有機物が生物化学的に酸化されるのに必要な酸素量のことで、生物化学的酸素要求量という。生物化学的酸化とは、水中の好気性微生物が有機物を栄養源とし、水中の酸素を消費してエネルギー化、生命維持・増殖するとき、有機物が生物学的に酸化分解されることをいい、有機物が多いほど消費される酸素量が多くなる。したがって、BODが高いことはその水中に有機物が多いことを示し、化学的酸素要求量(COD)とともに水質汚濁を示す重要な指標である。
4	化学的酸素要 求量 (COD)	CODは水中の被酸化性物質(有機物)を酸化剤で化学的に酸化したときに消費される酸化剤の量を酸素に換算したもので、化学的酸素要求量という。CODが高いことはその水中に有機物が多いことを示し、生物化学的酸素要求量(BOD)とともに水質汚濁を示す重要な指標である。
5	紫外線(UV)吸 光度	紫外線吸光度とは、水中の有機物濃度と波長 250~ 260nm の吸光度との間に相関関係があることを利用して、原水の有機性汚濁の状況や浄水処理過程の水質状況を把握する方法で、トリハロメタン生成量の目安となる。そのほか、高度浄水処理と関連して浄水処理過程の処理性の評価や粉状活性炭運用の評価に用いる目的で測定されている。 測定には紫外線領域に吸収の少ない石英セルを使用する。
6	浮遊物質(SS)	水中に懸濁している粒径 1μ m~ 2 mm 程度の不溶解性物質のことをいう。SSと記すこともある。上水試験方法では、網目 2 mm のふるいを通過した一定量の試料を 1μ m のメンブレンフィルターでろ過し、その残留物を $105\sim110$ $^{\circ}$ $^{\circ}$ $^{\circ}$ で $^{\circ}$ 時間乾燥し、秤量して求める重量法を定めている。濁度との相関が議論されることがあるが、厳密な意味での相関関係はない。浄水処理、排水処理などに影響を及ぼす。
7	侵食性遊離炭 酸	水中に溶解している二酸化炭素(CO2)のうち、水中のアルカリ化合物と反応して炭酸化合物を生成させるような腐食性のあるもの。
8	全窒素	水中に含まれる窒素化合物の総量のことで、窒素量で表す。窒素はリンとともに水源の富栄養化の原因物質の一つであり、湖沼やダム湖などの閉鎖性水域での富栄養化による藻類などの増加は、浄水操作上の障害や藻類に由来する臭気物質による水道水の異臭味問題などを引き起こすことがある。
9	全リン	水中に含まれるリン化合物の総量をいい、リン量で表す。水中のリン化合物は、正リン酸(オルトリン酸)、メタリン酸、ピロリン酸、ポリリン酸などの無機リン酸塩と、農薬、エステル、リン脂質などの有機リン化合物があり、これらが溶存状態または懸濁状態で存在している。リンは地質中に広く存在し、あらゆる動植物にも含まれている。従って自然水中にも含まれるが、リン化合物は肥料、農薬、合成洗剤、し尿などにも含まれているため、水中のリン化合物の増加は生活排水、工場排水、農業排水などの混入に由来する場合が多い。リン化合物の増加は湖沼・海域の富栄養化を促進する一因とされている。

10	リン酸イオン	リン化合物は、総リン、リン酸イオンおよび加水分解性リン化合物に区別して測定され、いずれも
		リン酸イオン量で表示される。リン酸には、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸
		などがあり、普通はオルトリン酸を単にリン酸または正リン酸という。オルトリン酸は水中で解離して
		オルトリン酸イオンとなる。
11	トリハロメタン生	20℃、pH7.0±0.2 の条件下で、24±2 時間静置後、残留塩素が 1~2mg/L となるように塩素処理
	成能	した検水のトリハロメタン濃度のことで、トリハロメタン前駆物質量の指標となる。THM-FP、THM 生
		成能ともいわれる。トリハロメタンの前駆物質として種々の有機物が認められているが、そのすべて
		が明らかではないので、前駆物質を直接測定することはできない。またトリハロメタンの低減方法と
		して、塩素処理を行う前に前駆物質を除去する手法が効果的であるため、トリハロメタン生成能は
		その除去効果の評価手法として、広く利用されている。
12	生物	水道の場合、水源から給水栓水に至る水中に懸濁している微小な植物及び動物を指し、魚類な
		ど大型の生物は含まない。
		試験結果は、水源の状況の監視、適切で効率のよい浄水処理方法の選択、生物障害予防及び
		対策に利用する。
13	アルカリ度	水中に含まれている炭酸水素塩、水酸化物および炭酸塩などを中和するのに必要な酸の量に相
		当するアルカリ量を炭酸カルシウム($CaCO_3$)の量(mg/L)で表したもので、酸消費量ともいう。中和
		点の pH 値により P-アルカリ度(フェノールフタレイン変色点 pH8.3)と M-アルカリ度(メチルレッド混
		合指示薬変色点 pH 約 4.8)に区別される。M-アルカリ度は総アルカリ度とも呼ばれる。構成成分に
		より炭酸水素塩によるものを炭酸水素アルカリ度(重炭酸アルカリ度)、水酸化物によるものを水酸
		基アルカリ度、炭酸塩によるものを炭酸アルカリ度という。
14	溶存酸素	水中に溶解している酸素のこと。DOともいう。供給源の多くは大気であるが、藻類の光合成によ
		り発生した酸素のこともある。酸素の溶解度は気圧、水温、塩分などによって影響される。有機物で
		汚濁した水中では、生物化学的酸化により酸素が消費されるため溶存酸素が減少する。水温の急
		激な上昇時や、藻類が著しく繁殖した場合には、過飽和となることもある。
15	硫酸イオン	水中に溶解している硫酸塩中の硫酸分のこと。例えば硫酸カルシウムのような硫酸塩は水に溶け
		るとカルシウムイオンと硫酸イオンになる。硫酸塩は地殻中に広く分布しており、これが溶けて硫酸
		イオンとなるため、自然水中には常に多少の硫酸イオンが含まれている。これは主に地質に起因す
		るが、化学肥料、硫黄泉、鉱山排水、工場排水、し尿を含む下水排水および海水などの混入により
		増加することもある。また、浄水処理において凝集剤に硫酸アルミニウムを使用すると若干増加す
		る。硫酸イオンが多量に含まれると水の味が悪くなり、鉄管などの腐食を促進する傾向がある。
16	溶性ケイ酸	自然水中のケイ酸の形態は非常に複雑で、イオン、コロイドおよび分子状のものやケイ酸塩また
		は生物体に含まれるものなど各種ある。測定上から大別して、溶性ケイ酸と総ケイ酸があり、溶性
		ケイ酸は水中における溶解性のケイ酸のことである。